Rapid calculation of surface wave dispersion
نویسندگان
چکیده
منابع مشابه
Laser-ultrasonic surface wave dispersion measurements on surface-treated metals.
Surface acoustic wave (SAW) velocity spectroscopy has been long considered to be one of the leading candidates for nondestructive characterization of surface-treated metals because of its ability to probe the material properties at different penetration depths depending on the inspection frequency. We developed a high-precision laser-ultrasonic technique to study the feasibility of SAW dispersi...
متن کاملRapid calculation of acoustic fields from arbitrary continuous-wave sources.
A Green's function solution is derived for calculating the acoustic field generated by phased array transducers of arbitrary shape when driven by a single frequency continuous wave excitation with spatially varying amplitude and phase. The solution is based on the Green's function for the homogeneous wave equation expressed in the spatial frequency domain or k-space. The temporal convolution in...
متن کاملRapid calculation of paraxial wave propagation for cylindrically symmetric optics.
When calculating the focusing properties of cylindrically symmetric focusing optics, numerical wave propagation calculations can be carried out using the quasi-discrete Hankel transform (QDHT). We describe here an implementation of the QDHT where a partial transform matrix can be stored to speed up repeated wave propagations over specified distances, with reduced computational memory requiremen...
متن کاملRapid, accurate calculation of the s-wave scattering length.
Transformation of the conventional radial Schrödinger equation defined on the interval r ∈ [0, ∞) into an equivalent form defined on the finite domain y(r) ∈ [a, b] allows the s-wave scattering length a(s) to be exactly expressed in terms of a logarithmic derivative of the transformed wave function φ(y) at the outer boundary point y = b, which corresponds to r = ∞. In particular, for an arbitr...
متن کاملCalculation of dispersion energies.
We summarize the theory of van der Waals (dispersion) forces, with emphasis on recent microscopic approaches that permit the prediction of forces between solids and nanostructures right down to intimate contact and binding. Some connections are pointed out between microscopic theory and macroscopic Lifshitz theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geophysical Journal International
سال: 1983
ISSN: 0956-540X,1365-246X
DOI: 10.1111/j.1365-246x.1983.tb02823.x